
OVR SMART CONTRACT,
CODE REVIEW AND

SECURITY ANALYSIS
REPORT

Customer : OVR
Prepared on : 04/10/2021
Platform: BSC
Language: Solidity

1



TABLE OF CONTENTS

Document 4

Introduction 6

Project Scope 7

Executive Summary 8

Code Quality 9

Documentation 10

Use of Dependencies 10

AS-IS Overview 11

Severity Definitions 14

Audit Findings 15

Conclusion 17

Our Methodology 18

Disclaimers 20

info@rdauditors.com Page 2



THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT ITS SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN

BE USED INTERNALLY BY THE CUSTOMER OR IT CAN BE

DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE

FIXED - UPON THE DECISION OF THE CUSTOMER.

info@rdauditors.com Page 3



Document

Name Smart Contract Code
Review and Security
Analysis Report for OVR

Platform BSC / Solidity

File 1 Initializable.sol

MD5 hash 891ECBD9283CB44253055711B5
5354D6

SHA256 hash
A2AAEBC80B5E5278C849336C4
E9498343EF6ADD8B21D43FB3F4
C87D5A5175BA5

File 2 OVRToken.sol

MD5 hash A0C039B3CB2FC96765CCD5258
F855A36

SHA256 hash
60527CC3FECC2A072F10E2BC3
8B6D9E25912DF71F775D1050C5
E0896D3E2E339

File 3 Ownable.sol

MD5 hash 6406B9994519172D8D13B32A102
4D11D

SHA256 hash
DD7BA50F5D3221E38ED1528380
0F66941C278341A647298AFE019
86894EEDD17

File 4 ReentrancyGuard.sol

MD5 hash 5B84E9291AFD5573D60C667B09
C25AAA

SHA256 hash
F79B41F9736D76F5B627A3F8F09
B1C378CE59D690E85686D42D77
52F77B6D963

File 5 StakingV2

MD5 hash 93BE06F952987C86A105F162998
3ABCF

SHA256 hash
FC333D4E41BDEA37189D6D128
B57E77BD4B16F6E9B153D00FD7
2A152D4898A81

File 6 Context.sol

info@rdauditors.com Page 4



MD5 hash 34B249F23F865FFB147ABDED2A
E9266A

SHA256 hash
1978DA26CB892AB5593A18F31E
43E69223FFCAA4262F9488ACDD
ACE56A11741B

Date 04/10/2021

info@rdauditors.com Page 5



Introduction

RD Auditors (Consultant) were contracted by OVR (Customer) to conduct
a Smart Contracts Code Review and Security Analysis. This report
represents the findings of the security assessment of the customer`s smart
contracts and its code review conducted between 8 - 13 September and
1 - 4 October 2021.

We have checked 6 files of this contract, which are in the above table.

info@rdauditors.com Page 6



Project Scope

The scope of the project is a smart contract.

We have scanned this smart contract for commonly known and more
specific vulnerabilities, below are those considered (the full list includes
but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page 7



Executive Summary

According to the assessment, the customer’s solidity smart contract is
well secured.

You are here

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, manual audit found during automated analysis were manually

reviewed and applicable vulnerabilities are presented in the audit overview

section. The general overview is presented in the AS-IS section and all

issues found are located in the audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 0 very low level issues.

info@rdauditors.com Page 8



Code Quality
The libraries within this smart contract are part of a logical algorithm. A

library is a different type of smart contract that contains reusable code.

Once deployed on the blockchain (only once), it is assigned to a specific

address and its properties/methods can be reused many times by other

contracts.

The OVR team has also conducted unit tests using scripts provided

through the same github link which fortify functionality and security of the

contract, which also helped us to determine the integrity of the code in an

automated way.

Overall, the code is well commented. Commenting can provide rich

documentation for functions, return variables and more. Use of Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page 9



Documentation

We were given the OVRStakingV2 contract as a github link

The hash of that file is mentioned in the table. As mentioned above, It's

well commented smart contract code, so anyone can quickly understand

the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well-known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page 10

https://github.com/OVR-Platform/stakingV2



AS-IS Overview
StakingV2

File And Function Level Report

File: StakingV2 .sol

Contract: StakingV2
Import: Console, IERC20Mintable, IERC20, SafeMath, Address,

SafeERC20, ABDKMath64*64, ABDKMathQuad.sol,
Initializable, sacrifice, ReentrancyGuard, Context,
Ownable

Inherit: Ownable, ReentrancyGuard, OVRStaking
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 PauseContract write Passed All Passed No Issue Passed
2 PauseDepositAndLockupExtensi

ons
write Passed All Passed No Issue Passed

3 initializeStaking write Passed All Passed No Issue Passed
4 setLiquidityProviderAddress write Passed All Passed No Issue Passed
5 deposit write Passed All Passed No Issue Passed
6 isLockUpPeriodExpired read Passed All Passed No Issue Passed
7 pow read Passed All Passed No Issue Passed
8 compound read Passed All Passed No Issue Passed
9 calcRewards read Passed All Passed No Issue Passed

10 getCurrentBalance read Passed All Passed No Issue Passed
11 LiquidityProviderAddress read Passed All Passed No Issue Passed

info@rdauditors.com Page 11



Contract: Initializable
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 isConstructor read Passed All Passed No Issue Passed

Contract: OVRToken
Import: Console
Inherit: ERC20, Interface, SafeMath
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 total Supply read Passed All Passed No Issue Passed
2 balanceOf read Passed All Passed No Issue Passed
3 allowance read Passed All Passed No Issue Passed
4 approve write Passed All Passed No Issue Passed
5 transfer write Passed All Passed No Issue Passed
6 transferFrom write Passed All Passed No Issue Passed

info@rdauditors.com Page 12



Contract: Ownable
Import: console, context, Initializable
Inherit: Initializable, context
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 initialize write Passed All Passed No Issue Passed
2 Owner read Passed All Passed No Issue Passed
3 isOwner read Passed All Passed No Issue Passed
4 renounceOwnership write Passed All Passed No Issue Passed
5 transferOwnership write Passed All Passed No Issue Passed

Contract: ReentrancyGuard
Import: Initializable
Inherit: Initializable
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 initialize write Passed All Passed No Issue Passed

info@rdauditors.com Page 13



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they
also have a significant impact on smart contract execution,
e.g. public access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however,
they cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated,
unused etc. These code snippets cannot have a significant
impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and
information statements cannot affect smart contract
execution and can be ignored.

info@rdauditors.com Page 14



Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

info@rdauditors.com Page 15



Not For User

There are some owner only functions, which can only be called by the

owner. So, if the owner's wallet is compromised, then it carries the risk of

the contract becoming vulnerable.

● PauseContract: Within the smart contract, the owner can stop,

pause deposits, withdraw and lockup extensions.

● PauseDepositAndLockUpExtension: The owner can pause

deposit and lockup extension.

● SetLiquidityProviderAddress: Only the owner can set the address

for the liquidity provider's reward.

info@rdauditors.com Page 16



Conclusion

We were given a contract file and have used all possible tests based on

the given object. The contract is written systematically, so it is ready to go

for production.

Since possible test cases can be unlimited and developer level

documentation (code flow diagram with function level description) not

provided, for such an extensive smart contract protocol, we provide no

such guarantee of future outcomes. We have used all the latest static tools

and manual observations to cover maximum possible test cases to scan

everything.

The security state of the reviewed contract is now “well secured”

info@rdauditors.com Page 17



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic

errors, and random number generators. We also watch for areas where

more defensive programming could reduce the risk of future mistakes and

speed up future audits. Although our primary focus is on the in-scope

code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

info@rdauditors.com Page 18



Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an Issue

entry for it in this document, even though we have not yet verified the

feasibility and impact of the issue. This process is conservative because

we document our suspicions early even if they are later shown to not

represent exploitable vulnerabilities. We generally follow a process of first

documenting the suspicion with unresolved questions, then confirming the

issue through code analysis, live experimentation, or automated tests.

Code analysis is the most tentative, and we strive to provide test code, log

captures, or screenshots demonstrating our confirmation. After this we

analyse the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page 19



Disclaimers

The smart contracts given for audit have been analysed in accordance
with the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report, (Source Code); the Source
Code compilation, deployment and functionality (performing the intended
functions).

Because the total number of test cases are unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of
the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it
is important to note that you should not rely on this report only - we
recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

info@rdauditors.com Page 20



Email: info@rdauditors.com

Website: www.rdauditors.com

info@rdauditors.com Page 21

http://www.rdauditors.com

